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Abstract

Ordinal categorical responses are frequently collected in survey studies, human medi-

cine, and animal and plant improvement programs, just to mention a few. Errors in this

type of data are neither rare nor easy to detect. These errors tend to bias the inference,

reduce the statistical power and ultimately the efficiency of the decision-making pro-

cess. Contrarily to the binary situation where misclassification occurs between two

response classes, noise in ordinal categorical data is more complex due to the

increased number of categories, diversity and asymmetry of errors. Although several

approaches have been presented for dealing with misclassification in binary data, only

limited practical methods have been proposed to analyze noisy categorical responses.

A latent variable model implemented within a Bayesian framework was proposed to

analyze ordinal categorical data subject to misclassification using simulated and real

datasets. The simulated scenario consisted of a discrete response with three categories

and a symmetric error rate of 5% between any two classes. The real data consisted of

calving ease records of beef cows. Using real and simulated data, ignoring misclassifi-

cation resulted in substantial bias in the estimation of genetic parameters and reduction

of the accuracy of predicted breeding values. Using our proposed approach, a signifi-

cant reduction in bias and increase in accuracy ranging from 11% to 17% was observed.

Furthermore, most of the misclassified observations (in the simulated data) were identi-

fied with a substantially higher probability. Similar results were observed for a scenario

with asymmetric misclassification. While the extension to traits with more categories

between adjacent classes is straightforward, it could be computationally costly. For

traits with high heritability, the performance of the methodology would be expected to

improve.
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Introduction

Error in the measurement and recording of data, especially discrete data, is a prevalent issue

that has the potential to affect the results of any analysis through the reduction of the statistical

power and the increase in bias [1–6]. While measurement errors can occur in continuous and

categorical variables, it has been shown that their impact on inference is more severe in dis-

crete data [7]. When error occurs in categorical variables it is commonly called misclassifica-

tion and is a topic that has drawn considerable research due to its negative effect on the

inference. More specifically, misclassification occurs with the assignment of a discrete

response to a class that does not accurately reflect its true state [8]. For complex and heteroge-

neous diseases, several subclasses with varying phenotypes often exist. Using typical diagnostic

technologies, the different subclasses can be difficult to differentiate for various reasons; sam-

ples may look alike under microscopic analysis, individuals may share the same symptoms or

markers used in the diagnostic, or one or more subclasses of the disease may simply be

unknown [5]. This similarity can consequently lead to misdiagnosis [9]. It is well documented

in the literature that misclassification in a response variable will have two primary inferential

implications: 1) biased parameter estimates and 2) a reduction of statistical power [1,6,10–11].

Practically, this will manifest as inaccurate estimates of the model parameters and a reduced

ability to identify truly influential explanatory factors. In recent years, there has been increased

discussion of a lack of reproducible research across a wide range of fields. While many factors

are likely to contribute to irreproducibility, inaccurate measurements have been implicated as

a potential culprit [12–14]. Error can be introduced at various stages of data collection and

analysis, and it has been estimated that error rates in many datasets can be expected to fall

between 1–5% if measures to prevent them are not taken [15]. For human disease data, much

higher error rates have been reported. In a 2010 report by the Pennsylvania Patient Safety

Authority, diagnostic errors in acute care ranged between 3.1 and 49.8% [16].

The challenges presented by misclassification are not overcome by a large sample size as

might be expected [17–18]. Therefore, as “Big Data” becomes more accessible and utilized, it

will be essential to consider the potential for misclassification in these datasets [19–20]. It has

even been suggested that some large datasets may be more susceptible to misclassification

depending on the method and/or purpose of collection, such as electronic medical records [20].

Given the negative effects of misclassification on inference, ignoring its presence during

analysis would not be a reasonable approach. A variety of methods for dealing with misclassifi-

cation in a response have been reported [21–23]. The majority of these methods rely on the

estimation of misclassification rates (e.g. false positives and false negatives). A double sampling

approach has been suggested [10,24] that estimates rates of misclassification through the use of

two tests: 1) an inexpensive fallible classifier for the full sample and 2) a more expensive infalli-

ble classifier (or “gold standard”) for a partial sample. In many situations, though, a perfect or

even high accuracy classifier will either be inaccessible or nonexistent. Thus, misclassification

has become largely a statistical problem and several methods for addressing it have been pre-

sented over the years. Several likelihood-based methods have been suggested for dealing with

misclassification [3–4, 25–29]. Furthermore, [30] presented an elegant parametric and semi-

parametric approach for analyzing speaking fluency of immigrants that contemplates errors

due to subjective evaluations and scaling across individuals. Although these likelihood-based

approaches are able to handle the misclassification problem, they seem not to perform well

when the misclassification probabilities are small.

Advances in Markov Chain Monte Carlo (MCMC) simulation techniques have greatly

facilitated the use of Bayesian methods in misclassification problems. Hierarchical Bayes-

ian modeling with conjugate informative priors has become a method of choice for
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analysis of misclassified binary data. Several studies by our group [5–6,11] and others

[31–32] have been successful in dealing with misclassification errors in binary data under

various sampling models. However, limited research has been carried out to scale those

methods to the multinomial response situation. In this study, the methods presented by

our group to deal with misclassified binary traits will be extended to multinomial response

situations using a hierarchical Bayesian framework. Although our proposed approach was

developed and implemented before [33] published their paper on dealing with unidirec-

tional misclassification of ordinal covariates, both methods overlap on their approach to

the problem. However, our method is unique as it addresses misclassification on response

variables and it allows for asymmetric misclassification probabilities within a full Bayesian

implementation.

Materials and methods

Let y = (y1, y2,. . ., yn)’ be a vector of ordered categorical responses collected on n individuals

with yi taking the value of one of C mutually exclusive discrete responses. This observed data is

considered to be a noisy representation of true unobserved data, r = (r1, r2,. . ., rn)’. The distri-

bution of yi, conditional on the probability of observing each response, is given by

pðyijθ
�

i Þ ¼
YC� 1

k¼0
ðy
�

ikÞ
Iðyi¼kÞ; ½1�

where θ
�

i = (θ
�

i0, θ
�

i1,. . ., θ
�

i(C-1))’ is the vector of probabilities that observation yi for individual

i is observed as class k, p(yi = k), taking a value for each of the C discrete classes of the noisy

data; and I(yi = k) is an indicator function that takes the value of one if (yi = k), otherwise

equaling zero.

Obviously, the observed probabilities of the multinomial distribution in [1] are linear com-

binations of the true probabilities, θij, and the misclassification probabilities, πjk, which is the

probability that an observation with true class j is classified as observed class k. Misclassifica-

tion will occur when j does not equal k. Thus, for class k, θ
�

ik could be presented as

y
�

ik ¼ p0kyi0 þ p1kyi1 þ . . .þ pkkyik þ . . .þ pðc� 1Þkyiðc� 1Þ; ½2�

where θ
�

ik is the probability of observing class k for individual i, θij is the true probability of

observing the discrete response class j for individual i, and πjk is the conditional probability of

observing class k when the true class is j. When j is different from k, πjk is the misclassification

probability from true class j to observed class k. Thus,

y
�

ik ¼ ½p0k p1k . . . pkk . . . pðc� 1Þk�θi ¼ πkθi: ½3�

In matrix notation and generalizing to all elements of the vector, θ
�

i, Eqs [2 and 3] can be re-

written as

θ�i ¼

p00 � � � pðc� 1Þ0

..

. . .
. ..

.

p0ðc� 1Þ � � � pðc� 1Þðc� 1Þ

2

6
6
6
6
4

3

7
7
7
7
5
θi ¼

π0

..

.

πðc� 1Þ

2

6
6
6
4

3

7
7
7
5
θi ¼ Pθi; ½4�

where the matrix P assembles the conditional probabilities, πjk, between all classes. The vectors

θ
�

i and θi are specific to each individual and they could be modeled as a function of systematic

and random effects. However, the matrix P is common to all individuals. The matrix P does

not have to be symmetric and the only requirement is that columns sum to 1.
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In the absence of misclassification, the matrix P will be equal to the identity matrix, as

expected, and θ
�

i = θi.
Assuming conditional independence, the joint distribution of the true data, r, conditional

on the vector of true probability, θi = (θi0, θi1,. . ., θi(C-1))’ is given by

pðrjθÞ ¼ Pn
i¼1
PC� 1

j¼0
ðyijÞ

Iðri¼jÞ; ½5�

where I(ri = j) is an indicator function that takes the value of one if (ri = j) and otherwise is

equal to zero.

Let α = (α1, α2, . . ., αn)’, where αi is an unknown random variable indicating if the observed

discrete response for individual i arose from a switching (misclassification) event. Assuming

that the observed (and potentially misclassified) discrete response of individual i is k (k �
{0,1,. . .,C-1}), then αi can be modeled following a multinomial process with probability vector

πk = (π0k, π1k, . . . πjk, . . . π(C-1)k),

pðαjPÞ ¼ Pn
i¼1
PC� 1

j¼0
ðpjkÞ

Iðai¼hÞ; ½6�

where h is an index taking C discrete values and I(αi = h) is an indicator function that takes the

value of one if (αi = h) and otherwise is equal to zero.

The joint distribution of α and r given θ and π can be written as

pðr;αjθ;PÞ ¼ Pn
i¼1
PC� 1

j¼0
ðpjkÞ

Iðai¼hÞðyijÞ
Iðri¼jÞ: ½7�

The joint distribution in Eq [7] depends on the true discrete data, r, which is not available.

However, such data could be generated as a function of the observed contaminated discrete

responses, y, and the vector α. Let f() be a link function that relates the true discrete data to the

noisy responses and the vector of indicator variables α

ri ¼ f ðyi; aiÞ: ½8�

For example, if the observed and potentially noisy discrete response for individual i is yi = 0

then the true unobserved response, ri, can be generated using the relationship

ri ¼ ð1 � aiÞyi þ aið1 � yiÞ;

with αi taking the value of 0 (no misclassification), 1 (switching from ri = 1 to yi = 0) and 2

(switching from ri = 2 to yi = 0). A similar relationship could be built when the observed dis-

crete response yi is different from zero.

Using the relationship in Eq [8], the joint distribution in Eq [7] could be re-written as a

function of the observed data,

pðy;αjθ;PÞ ¼ Pn
i¼1
PC� 1

j¼0
ðpjkÞ

Iðai¼hÞðyijÞ
Iðf ðyi ;aiÞ¼jÞ; ½9�

where I(f(yi, αi) = j) is an indicator function that takes the value of one if (f(yi, αi) = j) and oth-

erwise is equal to zero.

It is often the case that the probability of observing a specific outcome of the multinomial

process, θij, is a function of a set of systematic (β) and random (u) effects. Thus, from hereafter

θij will be denoted by θij(β, u) to indicate this relationship.

To finalize the Bayesian formulation, prior distributions are needed for the unknown

parameters in the model. For the systematic and random effects the following priors were
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specified:

pðβ jβmin; βmax�Þ � U½βmin; βmax�; ½10�

pðu jA;s2

uÞ � Nð0;As2

uÞ: ½11�

where βmin and βmax are known hyperparameters, A is a known symmetric covariance matrix

between the elements of the vector u, and σu2 is an unknown dispersion component for which

a scaled inverse chi-squared with v degrees of belief and scaling factor s2 was used as the prior.

pðs2

u jn; s
2Þ � w� 2ðn; s2Þ ½12�

βmin and βmax are hyperparameters to be specified by the researcher based on published

estimates in the literature, based on the researcher’s own experience of the range of values the

parameter might take, or by choosing an interval large enough to contain all reasonable values

of the parameter.

For the misclassification probabilities vector, πk, a Dirichlet distribution was assumed,

pðπk jτÞ ¼
1

BðτkÞ
PC� 1

j¼0
p
tjk � 1

jk ¼ Diðπk; τkÞ; ½13�

where τ = (τ0k, τ1k, . . ., τ(c-1)k)> 0 is the vector of concentration parameters of the Dirichlet

distribution, B(τj) is the multivariate Beta function that plays the role of a normalizing con-

stant, and πjk is the probability of misclassification (switching) from discrete response class j to

class k as defined previously in Eqs [2] and [3].

The joint posterior distribution of all unknowns in the models is proportional to the prod-

uct of the expressions in Eqs [9–13],

pðβ; u;α;PjyÞ /

Pn
i¼1
PC� 1

j¼0
ðpjkÞ

Iðai¼hÞ½yikðβ; uÞ�
Iðf ðyi ;aiÞ¼jÞ: s�

qþn
2

u

� �
exp

� :5ðu0A� 1uþ s2Þ
s2
u

� �

:PC� 1

k¼0

1

BðtkÞ
PC� 1

j¼0
p
tjk � 1

jk for βmin � β � βmax; ½14�

where q is the number of elements in the vector u. In genetics studies, q will be equal to the

number of individuals in the pedigree file, a file listing the ID of each animal in the population

along with its sire and dam ID (where a zero is used for unknown sires and dams). Inclusion

of pedigree information in the model is essential as it relates information concerning genetic

merit of an individual through its relatives and information on the relatives.

A data augmentation algorithm as described by [34] and [5] will facilitate the implementa-

tion of the model in Eq [14]. It consists of assuming the existence of an unknown continuous

random variable, li, that relates to the discrete response via the following relationship:

pðyi ¼ k jli; tk� 1; tkÞ ¼
1 if tk� 1 < li � tk
0 otherwise

;

(

where tj is an arbitrary threshold value. If yi can take a value in one of C mutually exclusive

ordered categorical responses, then there will be C+1 thresholds (t-1, t0, t1, . . ., tC-1) where t-1
and tC-1 are often set equal to negative and positive infinity.

The underlying liability for individual i could be modeled as a function of the systematic

and random effects,

li ¼ xiβþ ziuþ ei;

Misclassification in ordered categorical responses

PLOS ONE | https://doi.org/10.1371/journal.pone.0208433 December 13, 2018 5 / 17

https://doi.org/10.1371/journal.pone.0208433


Where xi and zi are known incidence matrices relating the liability of individual i to the set of

systematic and random effects, respectively, and ei is the error term. Augmenting the model in

Eq [7] with the vector of liabilities results in a lack of identifiability. To make the augmented

model identifiable [34], two restrictions are needed. It was assumed that t0 = 0 and var(ei) = 1.

At the liability scale, the full conditional distributions of β, u and σu2 are identical to those

obtained in a standard analysis of discrete data in the absence of misclassification and can be

found in [34], [5] and [35]. These conditional distributions, needed for a Bayesian implemen-

tation of the model via the Gibbs sampler, were in closed form, and were truncated normal for

the liabilities, normal for the position parameters, and scaled inverse chi-squared for σu2.
The conditional of αi is a multinomial distribution,

pðaijβ; u;α� i;P;σ
2

u; yÞ / PC� 1

k¼0
ðpjkÞ

Iðai¼hÞ½yijðβ; uÞ�
Iðf ðyi ;aiÞ¼kÞ;

where α-i is the vector α without the ith position.

For the misclassification probabilities, πj, its conditional distribution is proportional to

pðπkjβ; u;α;P� k;σ
2

u; yÞ / PC� 1

k¼0

1

BðτkÞ
PC� 1

j¼0
p
tjk � 1

jk Pnk
i¼1
PC� 1

j¼0
ðpjkÞ

Iðai¼hÞ;

where P-k is the matrix P without the kth row and nk is the number of individuals with an

observed discrete response equal to the kth category (class).

pðπkjβ; u;α;P� k;σ
2

u; yÞ / PC� 1

k¼0

1

BðτkÞ
PC� 1

j¼0
p
tjk � 1

jk PC� 1

j¼0
ðpjkÞ

gjk

/
1

BðτkÞ
PC� 1

j¼0
p
ðtjkþgjk � 1Þ

jk :

where γjk is the number of discrete responses switched (misclassified) from true class j to the

observed class k. Thus, πk is distributed as Di(πk; τk + γk) with γk = (γ0k, γ1k, . . ., γ(C-1)k). The

vector γk is easily obtained as a by-product of the sampling process.

Data

Calving ease, a measure of how easily a cow delivers her calf, is an important trait in beef cattle

production. Selection on animals with a high growth rate is of importance to the industry for

the sake of yielding a higher carcass weight per animal. However, growth rate and birth weight

are positively correlated traits, and so selection on a higher growth rate indirectly selects for

higher birth weights. It has been found that high birth weight is the largest contributing factor

in rates of dystocia, or calving difficulty, an issue that leads to several health and economic con-

cerns, such as increased mortality for calf and cow and additional veterinary costs. It is there-

fore of interest for producers to consider calving ease directly as a trait in their selection

models. However, without strict protocols on the farm, measuring calving ease may involve a

significant degree of subjectivity.

This study was largely motivated by a real beef cattle dataset. The data consisted of calving

ease and related measurements in a composite breed of beef cattle obtained from the USDA

Fort Keogh Range and Research Laboratory in Miles City, Montana [36–37]. After quality con-

trol, the USDA data included 955 calving ease phenotypes (or observations). Calving ease was

scored on a four-category scale in the raw data, with a score of 1 for the easiest calving and 4

for the most problematic (Caesarian section required); however, category 4 contained few

observations and so categories 3 and 4 were combined into a single bin to avoid an extreme-

case problem (ECP), when the discrete response is the same for all individuals within a given
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systematic effect class. The three resulting categories were scored as 0 for no difficulty, 1 for

moderate difficulty and 2 for severe difficulty. The distribution of calving ease scores showed

an unexpected pattern of few calvings for category 1 (moderate difficulty). Given the subjectiv-

ity of the trait (scoring carried out by farm employees) and the fact that some cows calve over-

night under standard ranch conditions with limited presence or absence of ranch employees,

it was reasonable to assume that the collected data could be subject to potential misclassifica-

tion. In order to test the adequacy of the proposed method to deal with noisy ordered categori-

cal data and to evaluate its robustness in the presence of a small sample size, two datasets of

large and small (D1 and D2, respectively) sample size were simulated.

Simulated data. Both datasets (D1 and D2) were simulated following the structure of a

real calving ease dataset. For both datasets (D1 and D2), a discrete trait with three categories

(C = 3), similar to calving ease, was simulated. The number of animals with phenotype (n) ran-

ged between 8,939 and 9,042 for D1 and 1,393 and 1,425 for D2. The pedigree files included

10,000 and 1,563 animals for D1 and D2, respectively. A mixed linear model that includes

three systematic effects and one random effect in addition to the error terms was used to

model the liabilities,

l ¼ Xβþ Zuþ e;

where l is a vector of liabilities of size n, β and u are vectors of fixed and random (animal)

effects, respectively, e is a vector of residuals, and X and Z are known incidence matrices with

the appropriate dimensions.

In this model, the random effect accounts for the animal’s additive genetic contribution to

the trait and is commonly called the animal additive effect. The genetic covariance between

animals is accounted for through the average relationship matrix, commonly denoted as A,

which is computed based on the known pedigree information. The element aij of the matrix A
is simply the expected additive relationship between animals i and j. A detailed algorithm for

constructing the relationship matrix can be found in [38]. Solving the mixed model equations

requires inversion of the relationship matrix. While the relationship matrix is relatively sparse,

it’s much more computationally efficient to directly build the inverse of the relationship

matrix, A-1 using simple rules derived in [39].

Each systematic effect was drawn from a normal distribution. The number of levels and

distributional parameters of each systematic effect are summarized in Table 1. The random

effects and residual terms were generated from the following distributions:

u � Nð0;As2

uÞ;

e � Nð0; Is2

eÞ;

where A is a known matrix of expected additive relationships between animals computed

Table 1. Number of classes and distributions used to simulate the systematic effects for the large (D1) and small

(D2) datasets.

Fixed Effect

Number of Levels

DistributionD1 D2

1 20 5 N(-0.7,0.05)
2 10 5 N(-0.1,0.5)
3 5 5 N(0.1,0.2)

https://doi.org/10.1371/journal.pone.0208433.t001
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based on the information in the pedigree files [39] and σu2 and σe2 were set equal to 0.1 and 1,

respectively, resulting in a heritability of 0.091.

The simulated liability was discretized to generate an ordered categorical trait with three

categories (C = 3) using the following relationship:

yi ¼

0

1

2

tmin < li � t0

t0 < li � t1

t1 < li � tmax

;

8
>>>><

>>>>:

where yi is the discrete response for animal i, taking the value of 0, 1, or 2; and t = (tmin = -1,

t0, t1, tmax =1) is a vector of threshold values with t0 and t1 arbitrarily set to 0 and 1,

respectively.

Incidence rates of the three categories (0, 1, and 2) were on average (0.39, 0.38, and 0.23)

and (0.36, 0.46, and 0.18) for D1 and D2, respectively. All scenarios were replicated 10 times

and ECPs were avoided.

Misclassification was introduced to the simulated data by switching a subset of observations

from true class yi = j to observed class yi = k for (j, k) � (0, 1, 2) and j 6¼ k. Two scenarios of mis-

classification were investigated, symmetrical misclassification, where the rate of misclassifica-

tion (πjk) between two classes is equal in both directions (πjk = πkj), and non-symmetrical

misclassification, where the rate of misclassification from class j to class k is allowed to differ

from class k to class j (πjk 6¼ πkj).
For the symmetrical misclassification, a misclassification rate of 2.5% for each direction was

introduced to the data (πjk = 0.025 for all j 6¼ k). This approach yielded a non-differential net

rate of misclassification in the simulated data of 5%. For the nonsymmetrical scenario, a mis-

classification rate was set equal to 1, 3, 1.5, 1, 0.1, and 0.1% for π12, π21, π23, π32, π13, and π31,
respectively.

Real data. The real data consisted of calving ease records from 955 first parity cows from a

Composite Gene Combination breed (CGC; 50% Red Angus, 25% Charolais, 25% Tarentaise;

[36–37]) born between 2002 and 2011 at USDA-ARS, Fort Keogh Livestock and Range

Research Laboratory, Miles City, MT. The pedigree file was comprised of 1,357 animals, includ-

ing 82 sires and 651 dams. Calving ease was scored on a discrete scale with three categories

(0 = no difficulties; 1 = moderate difficulties; and 2 = severe difficulties), where the most severe

category was composed of two separate classes that were collapsed together. The systematic

effects consisted of sex (2 classes), feed treatment (2 classes) and year of birth (10 classes).

Data analysis

Each of the simulated data sets for the symmetric scenario was analyzed using the following

models: true simulated discrete data analyzed with a classical threshold model (M1), noisy sim-

ulated data analyzed with a classical threshold model that does not contemplate misclassifica-

tion (M2), noisy simulated data analyzed with a threshold model that contemplates

misclassification following our proposed method and misclassification probabilities assumed

known (M3), noisy simulated data analyzed with a threshold model that contemplates misclas-

sification following our proposed method and misclassification probabilities assumed

unknown (M4). An additional analysis was carried out to test the validity of our approach

under a null model (when no misclassification is present in the data). For that purpose, the

true simulated data was analyzed with a threshold model that contemplates misclassification

following our proposed method and misclassification probabilities assumed unknown (M5).
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The simulated data generated under the non-symmetric scenario was analyzed only with M4.

Similarly, the real data was analyzed only with M2.

Implementation was carried out using the Gibbs sampler. A unique chain of 200,000 sam-

ples was implemented with the first 100,000 iterations discarded as burn-in period. The proba-

bility of each observation being misclassified was calculated as the ratio between the number

of times the observation was found to be misclassified and the total number of iterations.

Results

Under the symmetric scenario, the estimate of the genetic variance, for the large simulated data

and in the absence of misclassification in the discrete response (M1), was virtually equal to the

true value used in the simulation (0.10). Furthermore, the 95% highest posterior density (HPD)

interval is well-centered around the true value, indicating a reduction of bias (Table 2). How-

ever, when 5% of the discrete responses were artificially misclassified but no measures to

address misclassification taken during the analysis (M2), the genetic variance was grossly under-

estimated with a posterior mean of roughly half the true value used in the simulation (0.052).

Additionally, the 95% HPD interval did not include the true genetic variance (0.10), indicating

significant bias in the estimate of the parameter (Table 2). This result demonstrates that when

appropriate measures are not taken to correct or account for misclassification, there will be sub-

stantial bias in parameter estimation even with low to moderate noise in the input data.

When the same noisy data used in M2 was analyzed using the proposed methodology that

accounts for potential misclassification, bias in estimates of genetic variance was significantly

reduced. This was true both when the probability of misclassification, πjk, between each pair of

classes j (j = 1,2,3) and k (k = 1,2,3), was assumed known and equal to the true value used in

the simulation (0.025) (M3) and when it was assumed unknown and estimated during the

analysis (M4). In fact, the posterior mean of genetic variance was 0.112, and 0.0998, for M3,

M4, respectively. In each of these cases, the true value of the parameter (0.10) was well within

the 95% HPD interval, indicating a reduction of bias.

For the non-symmetric simulation scenario, the posterior mean (SD) of the genetic vari-

ance was equal to 0.118 (0.0196) and 0.103 (0.0243) for D1 and D2, respectively. These esti-

mates are very similar to the true value used in the simulation (0.10) and based on the 95%

HPD interval (information not presented), these estimates have minimal bias.

Estimates of the probabilities of misclassification under model M4 for the symmetric and

non-symmetric simulation scenarios are presented in Table 3. For the symmetric scenario, the

Table 2. Posterior means, posterior standard deviations and the 95% highest posterior density interval (HPD) of the genetic variance (true value = 0.1) under differ-

ent models1 and datasets2.

Mean Standard Deviation 95% HPD Interval

D1 D2 D1 D2 D1 D2

M1 0.106 0.135 0.0255 0.0670 0.0586–0.170 0.0469–0.319

M2 0.0521 0.0919 0.0143 0.0422 0.0288–0.0846 0.0364–0.198

M3 0.112 0.151 0.0355 0.0881 0.0540–0.191 0.0460–0.380

M4 0.0998 0.106 0.0188 0.0239 0.0688–0.142 0.0681–0.161

M5 0.113 0.108 0.0226 0.0251 0.0755–0.163 0.0692–0.167

1 M1: True data analysis with a classical threshold model, M2: Noisy data analyzed with a classical threshold model, M3: noisy data analyzed with the proposed method

assuming the misclassification probability is known, M4: same as M3 except the misclassification probability is assumed unknown, M5: Noise free data analyzed using

our proposed method (null model);
2 D1: large dataset, D2: small dataset

https://doi.org/10.1371/journal.pone.0208433.t002
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misclassification probabilities between categories 1 and 2 (π12) and 2 and 3 (π23) of the discrete

responses were underestimated with posterior means of 0.0146 and 0.0135, respectively, com-

pared to the true value of 0.025. However, the misclassification probability between categories

2 and 3 (π23) was estimated with minimal bias and the posterior mean (0.0239) is very similar

to the true value (0.025). In spite of the underestimation of some of the misclassification proba-

bilities, the results clearly indicate the ability of the proposed methodology to adjust for the

misclassification in the data whether or not the true rate of misclassification is known. Similar

performance was observed using data from the non-symmetric simulation scenario. In fact,

five out of the six misclassification probabilities were accurately estimated and only the mis-

classification probability between categories 2 and 1 (π21) was under estimated (Table 3).

To further evaluate the adequacy of the proposed methodology, we tested its performance

under a null model (no misclassification in the data) under the symmetric simulation scenario.

Thus, when the noise free data used in M1 was reanalyzed using our proposed model that con-

templates potential misclassification (M5), the estimate of the genetic variance (0.113) was

similar to the true value and minimal bias was observed (Table 2). Most importantly, the esti-

mated misclassification probabilities were negligible, indicating that very few observations

were detected as potentially misclassified (Table 3). This was expected given that the data was

free of noise.

In order to evaluate the ability of the proposed method to correctly identify misclassified

observations, we calculated the posterior probability of misclassification of each observation in

the data set. The average misclassification probability of miscoded observations was over

twenty times higher than that of the non-miscoded observations. For the 95% truly non-mis-

classified and 5% misclassified observations, their average misclassification probability was

0.026 and 0.554, respectively. Fig 1 presents the distribution of misclassification probability for

the miscoded observations (Fig 1A) and the correctly coded observations (Fig 1B) for one rep-

licate. The 85th percentile of correctly classified observations was 0.02613, while the 15th per-

centile of misclassified observations was 0.0297. This is important as it shows that the

algorithm was able to distinguish between the two groups and the miscoded records were

detected with a high probability.

Table 3. Posterior mean of the misclassification probability between the different categories of the discrete responses and datasets1.

Symmetrical Misclassification

True Value M4 M5

Parameter D1 D2 D1 D2

π12 0.025 0.0146 0.0128 0.0112 0.0124

π23 0.025 0.0135 0.0062 0.0065 0.0057

π13 0.025 0.0239 0.0067 0.0019 0.0029

Nonsymmetrical Misclassification

True Value M4

D1 D2

π12 0.01 0.010 0.0095

π21 0.03 0.013 0.0100

π23 0.015 0.011 0.0098

π32 0.01 0.011 0.0099

π13 0.001 0.0013 0.0013

π31 0.001 0.0014 0.0011

1 D1: large dataset, D2: small dataset; πij is the misclassification probability between categories i and j

https://doi.org/10.1371/journal.pone.0208433.t003
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The correlation between the true and estimated breeding values under the different models

for the symmetric scenario is presented in Table 4. As expected, the highest correlation (0.378)

was obtained when the data was free of misclassification (M1), and the minimum (0.300)

when the data was noisy and misclassification was ignored during the analysis (M2). Using the

Fig 1. Misclassification probability densities for the a. miscoded observations and b. correctly coded observations.

https://doi.org/10.1371/journal.pone.0208433.g001

Table 4. Pearson correlation between true and estimated breeding values under different models1 and datasets2.

D1 D2

M1 0.378 0.370

M2 0.300 0.314

M3 0.350 0.346

M4 0.348 0.347

M5 0.377 0.370

1 M1: True data analysis with a classical threshold model, M2: Noisy data analyzed with a classical threshold model,

M3: noisy data analyzed with the proposed method assuming the misclassification probability is known, M4: same as

M3 except the misclassification probability is assumed unknown, M5: Noise free data analyzed using our proposed

method (null model);
2 D1: large dataset, D2: small dataset

https://doi.org/10.1371/journal.pone.0208433.t004
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noisy data and the proposed methods, the correlation was 0.350 and 0.348 for M3 and M4,

respectively. Under the null model (M5), the correlation was the same as in M1. Under the

non-symmetric simulation scenario, the correlation between true and estimated breeding val-

ues was equal to 0.36 and 0.356 for D1 and D2, respectively.

For the small simulated data, due to the fact that the true parameters of the model were esti-

mated with large uncertainty, the performance of the different methods was compared to M1

as reference. This choice is motivated by the fact that results obtained using M1 (noise-free

data and classical threshold model) are the best we can expect from the analysis of the small

simulated data. Under the symmetric simulation scenario, methods M2, M4, and M5 underes-

timated the genetic variance by 32, 21, and 20% compared to M1, respectively, and M3 resulted

in an overestimation of 12%. Although the proposed methods (M3, M4) for dealing with mis-

classification were unable to reproduce the results obtained using the noise-free data (M1),

they reduced the bias by more than half compared to M2. For M4, misclassification probabili-

ties were also underestimated with posterior means equal to 0.013, 0.007, and 0.007 for π12,

π23, and π13, respectively. Correlations between true and predicted breeding values (Table 4)

followed the same trend as those for the large data set, although they were a bit smaller in

magnitude.

The real data was analyzed assuming nonsymmetric misclassification probabilities between

categories. The estimated genetic variance was 0.326 and 0.118 using a classical threshold

model (M1) and our proposed method, respectively. Although there is no true value to com-

pare with, estimates obtained using our method are more realistic for a trait characterized by

low heritability [40–41]. Misclassification probabilities were around zero (0.001) for π31 and

π13, and approximately ten-fold higher (0.0098–0.0103) for π12, π21, π23, and π32. These results

are expected given the unlikely misclassification between the third category (major calving dif-

ficulty) and the other two categories and any potential misclassification is likely the result of a

posterior assessment of the calving event.

Discussions

It has been well-established in the literature that misclassification in the response variable,

especially discrete responses, will lead to biased estimation of parameters in the model [1]. The

results of this study showed clearly that a small noise level (5%) in an ordered categorical

response (3 categories) resulted in a substantial bias in the estimation of genetic variance and

breeding values. In animal and plant improvement programs such inaccurate estimates will

negatively impact the efficiency of selection.

The methodology discussed here is an extension to the work carried out by our group on

the analysis of binary data subject to misclassification [5–6,11]. It proposes to address misclas-

sification by identifying individual observations that are miscoded followed by switching (reas-

signment) to their true class. In doing so, a ‘true’ dataset is produced from which estimates of

parameters are inferred. While it is unlikely that all misclassified observations will be success-

fully detected in any practical application, the results presented here show that bias can be sig-

nificantly reduced by the proposed method. When the rate of misclassification was assumed

known, as may be the case in some diagnostic applications, bias in estimates of genetic vari-

ance was nearly eliminated and the resulting posterior mean (0.112) was very similar to the

estimate obtained for the true large sample data (Table 2). In most applications there may be

reason to suspect misclassification in the data, although its extent may not be known. Even in

such a scenario, the proposed method was able to substantially reduce the bias in the estima-

tion of the genetic variance (M4; Table 2). Both when the misclassification probabilities were

known or unknown, estimates of the breeding values were virtually identical to those obtained
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using the true noise-free data set. This is crucial for phenotype prediction and efficiency of

selection. When the data was small, the proposed method was not able to completely eliminate

the bias in the estimation of the genetic variance, but it helped reduce it by almost a half. This

could be due to the complexity of estimating the genetic variance with small data even in the

absence of misclassification. Additionally, with a small data set and a low noise level (5%) the

number of misclassified observations is limited (in our case an average of 7 misclassified obser-

vations between each pair of categories), which complicates the learning of the true data gener-

ating process needed to identify potentially misclassified responses. However, the breeding

values were estimated with an accuracy similar to the large data set (Table 4). For the large

data set, the probability of misclassification between classes 1 and 3 (π13) was accurately esti-

mated. However, the probability of misclassification between classes 1 and 2 (π12) and 2 and 3

(π23) were underestimated. This is not surprising due to the marked differences in liabilities

between observations in more distant categories. Some observations in adjacent categories

tend to have very similar liabilities (close to the separation threshold), which enormously com-

plicates the detection of misclassified observations and facilitates the switching of truly classi-

fied responses between categories. This behavior is illustrated in Fig 2, where the probability of

misclassification for correctly classified observations is highest when the true liability is located

near a threshold value separating two classes. In the case of misclassified observations, the

probability of misclassification is highest (almost 1) when non-adjacent categories are involved

(i.e., classes 1 and 3) as indicated in Fig 3. However, when the misclassification occurs between

adjacent classes, the misclassification probability is lower, especially when the liability of the

switched observation is closer to the threshold separating its true and observed classes (Fig 3).

Results of the analysis of the true dataset indicate the possibility of a low level of misclassifi-

cation. This is supported by the significant change in the estimation of the genetic variance

when misclassification was contemplated in the model. Furthermore, estimates of the misclas-

sification probabilities are well supported by husbandry practices. In practice, it is unlikely that

a misclassification could occur between category 3 (difficult calving) and the other two

Fig 2. Probability of misclassification of correctly classified observations. Dashed red lines indicate the threshold values separating the three

categories.

https://doi.org/10.1371/journal.pone.0208433.g002
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categories (1 and 2), but owevemisclassification is likely between classes 1 and 2, which are

more subjective.

In real applications, there is no absolute certainty about the presence of misclassification in

a given data set. Thus, we tested our proposed methodology under a null model (no misclassi-

fication in the data). Under small and large data set scenarios, the estimated genetic variance

and breeding values were virtually the same as when the true data was analyzed using a classi-

cal threshold model (Tables 2 and 4). Additionally, the probabilities of misclassification were

small to negligible, indicating the absence of misclassification as expected.

In this study, the proposed methodology was tested using simulated datasets for an ordered

categorical response with three categories and a heritability of 0.10. We assumed that the mis-

classification probabilities were symmetric between adjacent categories in order to facilitate

the implementation. While the extension to traits with more categories and asymmetric mis-

classification between adjacent classes is straightforward, it could be computationally costly.

For traits with higher heritability, and therefore higher predictability, performance of the

methodology would be expected to improve.

Conclusions

Large data sets are being collected in several fields of research from human heath to precision

agriculture. Although this data will undoubtedly contribute towards answering complex scien-

tific questions, the unavoidable noise, including the misclassification of discrete response vari-

ables, may result in biased inference, loss of statistical power and ultimately a less efficient

decision-making process. The methodology proposed in this study provides an effective tool

to at least reduce the negative impact of misclassification through the identification of poten-

tially miscoded observations and the prediction of their true response class. Furthermore, it

has been shown that the method is able to yield a similar reduction in bias whether the rate of

misclassification in the data is known or to be estimated. As misclassification is seldom known

Fig 3. Probability of misclassification of miscoded observations. Dashed red lines indicate the threshold values separating the three categories.

Individual plots are separated by the observed (miscoded) class of observations. Observations are plotted along the x-axis by their true liability,

indicating their true class.

https://doi.org/10.1371/journal.pone.0208433.g003

Misclassification in ordered categorical responses

PLOS ONE | https://doi.org/10.1371/journal.pone.0208433 December 13, 2018 14 / 17

https://doi.org/10.1371/journal.pone.0208433.g003
https://doi.org/10.1371/journal.pone.0208433


before the analysis, any proposed method to deal with misclassification has to perform well in

the presence of noise-free data. As indicated by the results of the null model, our method was

adequate. While the application demonstrated in the current study is on simulated beef cattle

production data, the methodology is flexible and would be adaptable to any ordinal response.
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